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Heat diffusion as a source of aerodynamic sound 

By A. J. KEMPTON 
Engineering Department, University of Cambridge 

(Reoeived 29 December 1975 and in revised form 1 June 1976) 

The paper examines the role of heat diffusion as an internal noise source in aero- 
engines and as a source of noise in the mixing of hot jets. We consider a number of 
model problems and find that the sound induced by unsteady heat transfer can 
show an unusually weak dependence on the mean flow velocity U, the intensity 
scaling as U8 in three dimensions. At low enough velocities diffusion effects will 
overwhelm other noise sources, but we have failed in our search for a significant 
practical situation in which we can prove that sound generated by diffusion 
clearly dominates over that excited by unsteady aerodynamic forces; they are 
some times comparable. 

We examine the possibility that diffusive monopole sources feature in the noise 
of hot jets using model problems in the linear case and using dimensional analysis 
in the nonlinear case, and conclude that no significant monopole exists when the 
specific heats are constant. But they are not constant at  low frequencies when, for 
example, heat flows into and out of vibrational energy modes; then an important 
monopole source is present. This source shows an unusually complicated scale 
effect. 

1. Introduction 
m’ e excess noise of aeroengines above that predicted by Lighthill’s (1952, 

1954) theory of aerodynamic sound generation at low Mach numbers has led 
many investigators to search for new source mechanisms, or alternatively for 
scattering mechanisms that can enhance the radiation efficiency of Lighthill’s 
quadrupoles (Ffowcs Williams & Hall 1970; Crighton 1972; Morfey 1973, and 
others). All searched for mechanisms that generate noise that increases with 
velocity less rapidly than the quadrupole noise, and which might dominate at  low 
jet speeds. But in this search little attention has been paid until very recently to 
the roles of heat diffusion and viscous dissipation. These are usually thought to be 
irrelevant to the noise problem since the Reynolds number involved is so large. 

Even though the Reynolds number based on the mean velocity and nozzle 
scale is extremely large, turbulence ensures that the appropriate length scale is 
small enough for irreversible processes rapidly to dissipate the energy of a jet. 
So when examining engine noise it might seem premature to disregard diffusion 
out of hand on the grounds that it is too slow over engine scales. The rapid oscilla- 
tions of Trevelyan’s rocker are possible since “the conduction of heat is not a slow 
process when small distances and masses are in question” (Rayleigh 1877). 
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Inhomogeneities in temperature can produce internal noise by scattering 
hydrodynamic pressures (Cumpsty & Marble 1974; Ffowcs Williams & Howe 
1974), but the role of heat diffusion as an internal noise source has been examined 
in detail only for combustion noise and in certain resonance situations: the 
Rijke tube, the Bosscha tube and tubes that are hotter at their closed end than a t  
their openend (Rayleigh 1877; Rott 1969). Temperature differences are known to 
have an effect on jet-noise. It has been observed for model jets (Hoch et al. 1973) 
that an increase in the jet temperature reduces the noise at high jet veIocities 
but increases the noise at low jet velocities; this increase was not attributed by 
Hoch to rig noise but was considered an essential feature of heated jets. Explana- 
tions of these effects have been provided by theoretical work by Morfey (1973, 
1974), Mani (1974), Tester & Morfey (1976) and others. They suggest that tem- 
perature inhomogeneities can scatter efficiently the quadrupoles’ near field, and 
can change the amount of mean profile refraction and shrouding of the quadru- 
pole noise. Lush & Fisher (19 Y 5), however, have formed an empirical correlation 
of the hot-jet noise data by assuming the existence of a source that generates 
noise whose intensity scales with the fourth power of velocity. Crighton (1975) 
argues the rationality of this and concludes that irreversible processes induce such 
a monopole; we disagree with his conclusion. 

In  this paper we begin our study by considering certain model problems where 
the temperature is specified on some solid bodies. From these we confirm that the 
sound may be considered to arise from the monopole-like fluctuating heat trans- 
fer to the fluid. We find that the sound intensity sometimes scales with the cube 
of the mean velocity, an unusually low exponent for noise in three dimensions. 
Such low exponents are possible since an additional length scale is present owing 
to diffusion, but are achieved at the expense of introducing inverse powers of the 
numerically large PBclet number Pe = U 2 / w ~ ,  the ‘Reynolds’ number based on 
the diffusivity of heat rather than the kinematic viscosity; the intensity of the 
sound scales as M4Pe-l. Thus, when in $ 4 the heat transfer is estimated for certain 
aeroengine and underwater situations, the resulting radiated sound is shown to be 
often insignificant. 

The case when streams of different temperatures mix and there is no fluctuating 
heat input into the fluid is dealt with in $5. In  the linear theory the expansion as 
part of the fluid is heated is compensated for by the contraction as another part 
is cooled. The noise source degenerates to a dipole, and the intensity of the rad- 
iated sound then scales with the mean velocity to the fourth power. Again, 
however, this low exponent involves the introduction of inverse powers of the 
P6clet number and is too weak to provide a theoretical justification of the corre- 
lation obtained by Lush & Fisher (1973); in any event this result is restricted to 
laminar flows. 

In  f 6 Crighton’s arguments for the existence of diffusive monopoles in turbu- 
lent flows are discussed and shown to be in error. We show thatt, even in the non- 
linear theory, no monopole source exists that is capable of generating an acoustic 
field whose intensity scales as U4, provided only that the specific heat remains 
constant. In  $7 we examine the effect of variations in the specific heats. With 
such variations heat diffusion does induce a monopole source that generates a low 
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frequency far field with intensity scaling as U4 and with no dependence on 
PBclet number. However this source is much weaker than the work of Crighton 
would suggest. 

2. Sound generated by heat diffusing from solid bodies 
Landau & Lifshitz (1959, p. 287) have examined the sound radiated when the 

temperature of a solid body is made to oscillate. The fluid close to the body 
expands and contracts as heat is fed in and is extracted, and the consequent flow 
of mass acts like a monopole source of sound. For a plane surface whose tempera- 
ture varies slowly they deduce an inner expansion for the temperature, valid in a 
region close to the surface where the diffusion equation holds. The resulting 
velocity of the fluid normal to  the surface attains a limiting value at distances 
from the surface small compared with an acoustic wavelength, and provides the 
matching condition to determine the radiated sound. 

It is possible alternatively to use an acoustic analogy. The analogies of Light- 
hill (1952, 1954), Phillips (1960) and Howe (1975) all reduce to the form 

for the linear problem, and the radiated sound may be deduced if the inner expan- 
sion is used to determine a2T/at2 (see Howe 1975). Herep is the pressure, p the 
density, T the temperature, c the ambient speed of sound and a suffix zero 
indicates that the undisturbed value of the variable is to be taken. 

A further alternative is to use the ‘inner solution ’ to deduce the fluctuating 
heat flow from the body to the fluid; the heat flow from a surface element dS is 
- k V T .  dS, where k is the thermal conductivity. We deduce the radiated sound 
from the equation (Morse & Ingard 1968, equations 7.1.21 and 7.1.22) 

where cP is the specific heat at constant pressure, Q is the rate of heat addition and 
F is the applied force, both per unit volume. For this problem F is zero. 

These three methods yield the same result. The monopole source strength is 
given by s p o u .  dS if the first method is used, and the velocity u is matched by 

if an acoustic-analogy approach is adopted and by 

if the heat flow is calculated. Volume and surface integrals are to be evaluated 
over the source region and the surface bounding it. These source terms are equiva- 
lent in the linear theory if pressure variations may be neglected in the source 
region, i.e. the source is compact. However, because mistakes have been made 
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when applying the method of matched expansions loosely in this manner, i t  is 
wise to verify directly for this simple problem that the results obtained by the 
above approaches are correct. 

The governing equations for a perfect gas are 

where 7ij = p(%/axj + auj /axi )  + (pv - &ij auk/axk* 

(See, for example, Lighthill 1956.) p is the viscosity, pv the bulk viscosity and R 
the specific gas constant, which is equal to cp - cv, where c,, is the specific heat at 
constant volume. These equations can be combined and linearized to give the 
governing equation for small variations in temperature as 

where y = cp/cv is the ratio of the specific heats, K = k/pocp is the diffusivity of 
heat, and v = p/po is the kinematic viscosity (v = (,a + fpv)/p0 if we include the 
effects of bulk viscosity). For periodic disturbances at low frequencies 

(w < C ~ / K  and w < cz/v)  

there are two linearly independent solutions to (6). These are, in one space dimen- 

(7) 
sion, T - exp { - iwt + iwx[ 1 + $iw(+v + (y - 1) K ) / c ~  + . . .]/c}, 

the solution to the wave equation modified by slight damping, and 

(8 )  T - exp { - iwt - (1 - i) x ( $ w / ~ ) *  [l- $iw(y - 1) ( K  -Qv)/ca + ...I}, 
the solution to  the diffusion equation modified by slight compressibility. The 
boundary conditions, i.e. the specified temperature and the condition of vanishing 
velocity, determine the magnitude of the acoustic and diffusion waves; if the 
rigid surface a t  x = 0 has temperature To + Tl e-iwt, to first order in Tl/To and 
lowest order in O K / C ~  the radiated sound has fluctuating pressure 

T OK 4 
To c2 

p = p o c 2 ~  (-) exp { - iw(t - x /c )  - aim}. (9) 

Since the three methods using the inner expansion give results in agreement 
with this direct approach, we feel justified in using them in more complicated 
situations examined later that are not amenable to a direct approach. 

These three methods and the direct approach have also been used to deduce 
the sound radiated when the temperature of a sphere of radius a; is made to vary 
as To+Tle-iwt in the limit wa/c < 1 but ( 0 / ~ ) 4 a  3 1 (the sphere is small on the 
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wavelength scale but large when compared with the width of the thermal 
boundary layer). All the approaches agree and give the far-field fluctuating 
pressure as 2Tl WK *oaa 

p z p o c  %(') ,,exp{-iw(t-r/c) -gin]. 

I n  a similar manner we can demonstrate that heat transfer causes a reduction in 
amplitude on reflexion when a plane sound wave is normally incident on a hard 
constant-temperature surface at z = 0. The sound wave causes the temperature 
of the fluid to vary as 

T = To + T* exp { - iwt - iwz[  1 + +iw($v + (y  - 1) K ) / c ~  + . . . ] /c}  

[cf.(7)]. The requirement of zero normal velocity ensures that the wave is 
reflected without change in amplitude to lowest order in W K / C ~ .  But the condition 
that the temperature of the wall be fixed at To means that a thermal wave 
must also be present; this is given, to lowest order in W K / C ~ ,  by 

- 2T* exp { - iwt + (1 - i) z(&/K)*} 

and drives an acoustic wave with temperature 

-24(1--i)T*(y- 1) (WK/C2)4exp{-iwt+iwZ~. 

So we deduce that the amplitude of the reflected wave is smaller than that of the 
incident wave by the factor 

1 - 2*(y - 1) (WK/C2)* + o ( W K / C 2 )  

(cf. Cremer 1948). Thus a hard constant-temperature surface absorbs energy 
from incident sound waves, regardless of the surface's absolute temperature. 

3. Sound generated by fluctuating flows over hot bodies 
An alternative means exists whereby the heat transfer from a hot body to the 

surrounding fluid may vary and cause sound to be generated. If the fluid velocity 
over the body fluctuates, or the rigid body itself undergoes slight oscillations in 
position, the heat transfer from the body is unsteady and produces monopole- 
type noise. 

To highlight the role of heat diffusion we restrict attention to inviscid flows. 
Not only does this simplify the governing equations, but it also enables us to 
pose problems that would otherwise not be sensible (for example, if we must 
include the viscous boundary layer, we cannot discuss flow over an infinite flat 
plate). Thus, as a model problem in this class, we can consider the two-dimen- 
sional laminar flow over the hard wall &, = 0 of an inviscid fluid with unperturbed 
temperature To and with velocity U in the 5, direction. The wall temperature is 
specified as To for 5, < 0 and for gl > a but is Tl for 0 < c;1 < a. The wall is then 
allowed to execute small rigid oscillations with velocity - U*e-bt in the l1 
direction. 

Variations in temperature due to diffusion will occur only in regions close to the 
temperature discontinuities, within a distance of the order of the diffusion length 



6 A .  J .  Kernpton 

To x = a  
To 

FIGURE 1. Flow over a pertly heated wall. 

scale (K /W)+ .  At low enough frequencies, W K / C ~  < 1, the source regions will be com- 
pact on a wavelength scale, so we neglect pressure variations within them. 
Furthermore we consider the wall to be stationary and apply locally a Galilean 
transformation such that the fluid velocity varies as U + U*e-i"t (figure 1). 
These assumptions introduce a relative error O(M2) .  

The temperature equation ( 5 )  becomes 

pcP DT/Dt = V .  (kVT) (11) 

in the frame of reference (x l ,  x2, x3)  = (2, y, x )  in which the wall is stationary. For 
the linear problem, the steady temperature satisfies T = To + T', where 

uaTi/ax = KV~T' ,  (12) 
with T i  = (Tl -To) [ H ( x )  -H(z-a)]  on y = 0. 

We treat the fluctuating velocity U*e-iot as a small perturbation to the steady 
veIocity U .  Thenthefluctuatingpart ofthe temperaturesatisfiestofirstorderin U* 

(13) aT*/at + uaT*/ax - KV~T* = - U*e-" aTi/ax, 

with T * = O  on y = O .  

We can thus find the 'inner solution', an approximation for the temperature in 
the source region. 

To deduce the radiated sound, to match on an acoustic wave, we employ 
Lighthill's acoustic analogy in the frame of reference g in which the fluid at 
infinity is at rest; the frames of reference g and x are related by 

tl = x l -  Ut-iU*(e-iot- 1 I/% t z  = x2, 6 3  = 5, 

asplat2 - ~ v 2 p  = azq j /ax i  axj,  

and the Jacobian of the transformation is unity, i.e. dV, = 03:. We have (Light- 
hill 1952) 

where %.j = P U ~  uj -I- @ - c2p) 8.j. 
In the manner of Lighthill (1 952), but taking account of the variation of .il& with 
time, we deduce that 
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A similar expression has been obtained by Ffowcs Williams (1974), who uses 
Lagrangian co-ordinates. His result differs since the Jacobian of the transforma- 
tion is then a density ratio. In  our problem 

qj = - c2(p -po) 8tj = c2p0 (T - To) Sij/TO, 

where T is the ‘inner solution’ for the temperature. We are thus able to deduce 
the radiated sound (see appendix A). 

If wa/c g 1, i.e. the heated region of the wall is compact on a wavelength scale, 
the fluctuating pressure of the radiated sound at E;1= R COB 8, E2 = R sin 8 is 

{ - iQ(t-.RR/c) +*in} 
(2nQR/c)8 ’ (15) 

with a relative error O(wa/c) + O(M2)  + O( U*/c) + O ( W K / C ~ )  + O((Tl - To)/Po), 
where M = U/c and Q is the Doppler-shifted frequency w/(  1 + 2w cos 8). The noise 
is dipole induced since the heat input near x = 0 is compensated for by the heat 
extraction near x = a. 

In  the limit a -+ a, corresponding to flow over a rigid oscillating wall with one 
step discontinuity in temperature, the artificial dipole nature of the source is 
removed and the far-field fluctuating pressure is 

(16) 
p0c2 Tl - To OK 4 U* exp { - i ~ ( t  - R/c)} 

= ( l + M c o s 8 ) 2 ~  (7) c (27rOB/c)8 ’ 
with a relative error O(M2) + O( U*/c) + O(OK/C~)  + O((Tl - To)/To). 

In  appendix B we show that, in the limiting case a + 00, the sound radiated is 
unaltered if the boundary conditions on y = 0 , x  c 0 are changed from T = To 
to aT/ay = 0. We still specify T = Tl for y = 0, x > 0, and then we have the prob- 
lem of flow over a heated juddering semi-infinite flat plate. 

If, as is usually assumed in aerodynamic noise theory, frequencies and all 
velocities scale with the mean velocity U, the far-field acoustic intensity associ- 
ated with the heat-input monopole in these unsteady laminar flows scales as U ,  U2 
end U8 respectively in one, two and three dimensions (the compact case expressed 
in (16) differs because the source degenerates to a dipole). The change from the 
normal U4 monopole scaling in three dimensions arises because the intensity of 
the radiated sound depends on W K / U ~ ,  the reciprocal of the PBclet number, and 
scales as M4Pe-l. 

4. Practical estimates of the noise from heat sources 
I n  aeroengine and underwater acoustics, there are several situations where 

heat sources could be important. For example, there will be fluctuating heat 
transfer when the flow over turbine blades of high heat capacity has varying 
temperature at the outlets to the combustion chamber, when the flow over cooled 
turbine blades has varying velocity and when over cooled turbine blades there is 
unsteady laminar-to-turbulent boundary-layer transition or there are unsteady 
shocks. 
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To assess the importance of some of these sources, we compare the noise result- 
ing from the unsteady heat transfer with that resulting from the unsteady viscous 
boundary-layer drag. We deduce the radiated sound from (1) : 

where F is the applied force and Q the rate of heat addition. For Prandtl numbers 
of order unity the effects on incompressible fluid motion of heat diffusion and 
viscous dissipation are comparable; but the viscous drag is a dipole noise source, 
and so the sound pressure generated by it will be smaller than that generated by 
the heat-transfer monopole by a factor of the order of the mean-flow Mach 
number. However, in most applications a far more dominant source arises from 
the fluctuations in lift and in form drag. At high Reynolds number these forces 
are much greater than the skin-friction drag and provide the most important 
noise source. 

We obtain an estimate of the relative importance of these sources in laminar 
flows by a dimensional argument. We consider unsteady laminar flow of a fluid 
at temperature To over an aerofoil of length a whose temperature is TI. From 8 2 
or $ 3  for the inviscid case, and from the estimates of Chapman (1974) or of 
Gersten (1966) for viscous flow, the fluctuating heat input scales as (Ua//c)*k(T, - !l&) 
per unit length, if frequencies scale as U/a. The fluctuating viscous drag 
scales as (Ua/v)*pU (Chapman 1974; Gersten 1966) and the fluctuating lift and 
form drag scale as pUza. We deduce the resulting noise from (11). The far-field 
pressure scales as 

for the heat source, the viscous drag source and the lift or form drag source 
respectively. For a typical configuration ( U a / ~ ) - b  w and the noise from the 
fluctuating lift and form drag will be d0minant.t 
As a more definite example, we examine flow of very slowly varying density 

incident on constant-temperature blading. The lift per unit length experienced by 
a two-dimensional aerofoil at an angle of incidence of about 5' is given approxi- 
mately by $ p U2a, where a is the chord length. The ratio of lift to drag is a maxi- 
mum, with a value of the order of 60, at about this angle of incidence (Goldstein 
1965). The boundary-layer drag and heat transfer between a flat plate of length a 
and the surrounding fluid are given by 

D M O-73pUza ( U a / v ) b  

and 

for a turbulent boundary layer and by 

Q x 0-73 kAT( Ua/v)* (,uc,/~)+ 

and 

D M 1.32pU2a( Ua/v)-* 

Q x 1.32 kAT( Ua/v)& Olc,/k)# 
t This result will hold at both high and low Strouhal numbers wa/U for visoous flows. At 

low Strouhal number the drag scales &B p P a ,  while at high Strouhal number the inertial 
drag dominates, scaling &B pUwaa. 
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for a laminar boundary layer, where AT is the temperature difference be- 
tween the plate and the fluid (Chapman 1974). Setting p = po+p‘e-ht and 
AT = Top’e-iwt/po, we obtain estimates for the fluctuating drag and heat transfer, 
valid in the ‘ very slowly varying ’ approximation, for an aerofoil in a flow of vary - 
ing temperature, For a Prandtl number of order unity, the sound pressure 
resulting from the oscillating drag on a flat plate is smaller by a factor of the flow 
Mach number than that resulting from the oscillating heat input. However the 
sound pressure resulting from the Oscillating lift on an aerofoil is larger by factors 
of about 6(Ua/v)%H and *(Ua/v)*H for the cases of turbulent and laminar 
boundary layers respectively. For a typical engine configuration these factors 
are about unity and 60 respectively. Thus for laminar boundary layers, except at  
extremely low Mach numbers, the fluctuating heat input will not be an important 
noise source, but when the boundary layers are turbulent this heat source is 
probably significant. 

If the flow velocity rather than the flow temperature is allowed to vary, in the 
laminar case heat sources become less important and the noise produced is as 
small as that due to the skin-friction drag. Suppose that the fluid velocity over a 
cooled two-dimensional flat plate of length a varies as U+ U*e--, where the 
frequency is so low that wa/c < 1 and the quasi-steady approximation may be 
used to deduce the drag and heat transfer. For laminar boundary layers the 
fluctuating drag is 0*26pU*( Ua/v)* e-ht and the fluctuating heat transfer is 
0-076k(qbTJ (Ua/v)*e-htU*/U (Gersten 1966), where To and are the tem- 
peratures of the fluid and plate respectively. The ratio of the sound pressure 
generated by the viscous drag to that generated by the heat transfer is 

Typically, in aeroengines we h d  that these noise sources are comparable. 
In underwater contexts the Mach numbers involved are smaller, but both the 
Prandtl number p P / k  and the factor To/(To - TI) are large; then the skin-friction 
drag dominates. 

Thus, although diffusion effects will overwhelm aerodynamic sources at low 
enough Mach number, we have not been able to think of a significant practical 
situation in which we can show that sound generated by diffusion clearly dom- 
inates that excited by unsteady aerodynamic forces. The two noise sources are 
comparable, however, when boundary layers are turbulent. But we expect our 
simple modelling to contain only an order-of-magnitude guide to the far more 
complicated practical situations, so should not be surprised to h d  that unsteady 
heat transfer induces monopoles accounting for significant sources of engine 
noise. 

Yol.,/4 MTo/(To - TI): 1- 

5. Sound generated by unsteady heat transfer between gas streams 
Even when there is no heat transfer from foreign bodies, heat diffusion may 

still be a source of sound if inhomogeneities exist in the fluid temperature. Then, 
because the expansion of parts of the fluid being heated is exactly compensated 
for in the linear theory by the contraction of theneighbouring parts being cooled, 
there is no longer any monopole source term. But there is a dipole term, so noise 
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No heat flux into plate : aT/ay=O 

FIUTJRE 2. Mixing of two streams with different temperatures. 

radiated is smaller by the compactness ratio (wK/c2)8 than the monopole noise 
induced by heat transfer between the fluid and its boundaries. 
As a model problem to illustrate this phenomenon, we consider uniform inviscid 

flow U in the El direction over the semi-inkite plate f 2  = 0, & c 0.  The temper- 
ature of the fluid far upstream is specified as To above the plate and Tl below the 
plate, and there is no heat flux into or out of the plate. To introduce unsteadiness 
into the problem, as before, we allow the plate to judder slightly in the t1 direction 
with velocity - U*e-iot, so that it occupies the region E2 = 0, El < -iU*e-iot/o. 
Since, again, at  low enough frequencies the source region will be compact, we 
neglect pressure variations in determining the fluid temperature in the inner 
region. In  the frame of reference in which the plate is at rest (figure 2) ,  the steady 
part of the temperature satisfies (12 ) ,  

uaTf/ax = K v ~ T ' ,  

aT*/at + u aT*/ax - KV~T'* = - U *e-iwt aT'/ax, 

aTf/ay = aT*/ay = 0 on y = 0, x c 0 

and the fluctuating part satisfies (13 ) ,  

subject to the boundary conditions 

and the upstream conditions 

and 

To as x+-m,  y>O,  
Tl as x+-m, y<O, 

T*+O as x- t -m.  

We can deduce the sound radiated directly as before. From Lighthill's acoustic 

where -W = -(u/C+ Vhe-'"'/C)Ei/1El, T = I E - & ~ X O , ~ ) I  

and Ti, = c2po(T - To) S,,/To, T being the 'inner solution' for the temperature. 
We thus deduce (see appendix C) the far-field acoustic pressure to be 
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with a relative error O(M2)  + O( U*/c) + O(WK/C~)  + O((T, - To)/To), where M = U/c  
and 0 is the Doppler-shifted frequency w / (  1 + M cos 0) .  The pressure is smaller by 
the compactness ratio (OK/@)* than that estimated in (16), for flow over a heated 
semi-infinite plate. The intensity scales with mean velocity to an exponent one 
greater than when solid constant-temperature surfaces are present, i.e. as U4 in 
three dimensions, Us in two dimensions and U2 in one dimension. But again the 
field is weak because the P6clet number appears in the denominator of the ex- 
pression for the radiated sound. 

We have similarly evaluated (in appendix D) the field in the three-dimensional 
problem with axial symmetry; the temperature satisfies the boundary condition 

aT/ar = 0 on r = a, 5 < -iU*(e-iwt- l ) /w 

and the upstream conditions 
To as E - t - c o ,  r > a, T4 TI as c-t-00, r < a .  

The resulting far-field pressure satisfies 

9 (18) -poc2 T' -To OK U* Oa sin2 Bexp { - iw(t  - R/c)} - -- 
= (l+McosB)2 To c2 c c */a 

providing the frequency w is low enough. An additional term Oa sin 0/c is intro- 
duced because the source is now a quadrupole, the further phase cancellation 
being due to the axial symmetry. 

I n  deducing these results we have deliberately ignored the scattering of the 
acoustic waves by the plate or duct. Scattering would augment our estimate of 
the field, which consequently constitutes only a lower bound on the noise. The 
detailed calculation of the scattered field would be a long exercise though there isno 
difficulty ofprinciple inits determinationusing the methodof matchedexpansions. 

If the flow is turbulent rather than laminar, and so is neither two-dimensional 
nor axisymmetric, we expect the radiated sound to differ in a number of ways. 
First, we expect real turbulence to be continually regenerating sharp interfaces 
between the hot and cold fluid, so that, while in the model problem the source 
region is localized to within a distance downstream from the edge of about (K/w)* ,  

this region will now extend to a distance of about U / o ,  the characteristic scale of 
the flow. The source strength is therefore increased by an amount of the order of 
the usually large factor ( w c / U 2 ) d .  Second, in the three-dimensional case, we 
expect the phase cancellation due to the symmetry of the probIem to disappear. 
Finally, any pronounced directivity of the source will probably be weakened. 
Thus we expect the far-field pressures (17) and (1 8) to be modified to scale as 

for the two-dimensional plate problem of a hot stream with temperature TJ 
and velocity U mixing turbulently with a cold stream of temperature To, and as 

for the equivalent axisymmetric duct problem when the hot jet has diameter D. 
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Although we have shown that heat diffusion can generate a far field that 
depends only weakly on the mean velocity U ,  we cannot thus account rationally 
for the correlation obtained by Lush & Fisher (1973). The emergence of an ad- 
ditional length scale (the diffusion length scale ( K / o ) ~ )  admits an additional 
compactness ratio ( w K / c ~ ) * ;  in most flows of interest this is much smaller than the 
normal compactness ratio M .  Thus, although we have a change from the normal 
Us scaling for dipole noise in three dimensions, this is achieved by the introduc- 
tion of inverse powers of the PBclet number; hence the intensity scales as WPe-1 
when the flow is turbulent. Even at the lowest jet velocities considered by Lush 
& Fisher, the PBclet number is high enough to render these heat-diffusion sources 
utterly negligible. 

6. Nonlinear diffusion as an acoustic source: constant specific heats 
Some authors have manipulated Lighthill’s source term, or the source term of 

alternative analogies, apparently to demonstrate the existence of acoustic 
monopoles (Lilley 1973; Mani 1976a, b ) .  We prefer to use a direct approach and 
start from an expression for the monopole source strength 

AS’ being a control surface bounding the compact source region. We examine this 
expression in some detail because our conclusions differ from those of Crighton 
(1975), who predicts a substantial monopole source with strength proportional 
to the jet velocity.? Then the intensity of the resulting sound field would scale as 
U4 in three dimensions and be independent of the Reynolds and P6clet numbers. 

We return to the nonlinear equations of viscous motion for a perfect gas, (2)- 
(5). To aid comparison with other authors’ work, we introduce the specific 
entropy 8, which satisfies the thermodynamic relation T d s  = c,dT + p d ( l / p ) .  
The temperature equation ( 5 )  then becomes the entropy equation 

The monopole source strength is given by 

t Our definition of source strength differs from that of some other authors, e.g. Ober- 
meier (1975). We follow Morse & w a r d  (1968) and define the monopole source strength 
density to be Q according to the equation - Vap = aQ/at. In three dimensions, 
at a distance R the pressure p sades aa UD2Q[R for frequencies w - U/B, D being the length 
scale of the source region. Because the rate of change of the monopole source strength is the 
forcing term, the far-field intensity scales aa U4 for a souroe strength scaling aa U. Ober- 
meier defines the source strength density to be aQ/at, and so his O(Ma) monopole is equiva- 
lent to our O(M)  monopole in the dependence of its field on jet velocity. 
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where V is the source region and S is the surface bounding it. Since pressure 
variations scale as po U2 the term 

will yield a monopole whose strength scales as Us. We therefore, like Crighton, 
restrict attention to 

Unlike Crighton, however, we proceed to show that this term cannot yield a 
monopole whose strength is proportional to U unless the specific heats vary. 

Using (21) we have 

if the specific heats are constant. The second term on the right-hand side of this 
equation may be transformed by the divergence theorem into a surface integral 
that vanishes. The first and third terms we examine by a dimensional analysis. For 
a hot jet with temperature T,, velocity U and diameter D issuing into a cold still 
atmosphere with temperature To, near-field pressure variations scale tw poUa 
and frequencies as U/D.  But there a m  two length scales involved: the scale for the 
volume integration is given by the jet diameter D, whilst that for the spatial 
gradients (for turbulent flows) is given by the diffusion length scale (K /O)+  or 
(KDIU)), or some similar expression involving the kinematic viscosity Y. For a 
Prandtl number of order unity, the fist and third term on the right-hand side of 
(22) therefore scale aa 

Po U3D2/(T,Cp), Po U3D2(T, - T , ) / ( m n  

(since temperature differences scale as Tj  - To); both these terms yield only weak 
monopoles whose strengths scale as Us. So we conclude that no significant 
monopole source exists. 

Crighton correctly deduces that 

where Q, is the dissipation function, and claims that the terms on the right-hand 
side of this equation are independent of the Reynolds number, since the spatial 
gradients become large in high Reynolds number turbulent flows. We can deduce 
this result from the dimensional analysis above, for 

will scale as po U, cp (TJ - To)2D2/T& which is independent of the Reynolds num- 
ber. But Crighton then argues that 



14 A .  J .  Kempton 

will scale as po U(S, -So) D2. This is not so, for, as we have already shown, 

does not yield a monopole whose strength scales as U if the specific heats are 
constant. 

Thus, as in the linear case, we find that the only significant diffusion source 
term is of dipole type unless the specific heats vary with temperature. 
Obermeier (1975) and Morfey (1976) have also reached this conclusion. 

7. Nonlinear diffusion as an acoustic source: variable specific heats 
Whenever the specific heats are constant, no monopole results from heat 

diffusion in a jet that is capable of generating a far field with intensity scaling as 
U4. But variations in the specific heats can lead to such a monopole. This can be 
modelled by allowing y to vary in our previous analysis, thus introducing an 
additional term in (22). The monopole source strength therefore becomes 

(see Morfey 1976). To examine the consequences of this term we first discuss the 
principal mechanism that causes specific-heat variations in non-monatomic 
perfect gases. 

Energy can be stored in several different modes of molecular motion. If the 
modes are all fully excited the total energy is distributed equally between them, 
but quite frequently some modes are unable to hold their full quota because of 
quantum restrictions. For air at  the temperatures of interest to us only the kinetic 
energy of molecular translation and rotation and the energy associated with 
molecular vibration are significant. 

When a perfect gas is in equilibrium the energy contained in each of the possible 
modes is a function of the temperature alone. Indeed the translational kinetic 
energy defhes the temperature, so that the specific energy in the three trans- 
lational modes satisfies 

E,(T) = $RT. (24) 

At temperatures above a few degrees Kelvin the rotational modes are fully excited, 
and for diatomic molecules the specific energy in these two modes satisfies 

EB(T) = RT. (25 )  

The vibrational mode, however, is fully excited only at temperatures of several 
thousand degrees Kelvin. At lower temperatures it is unable to hold its full 
share of the total molecular energy. Except at very high temperatures, it is 
reasonable to assume that the molecular vibration is harmonic and that it is 
separable from the molecular rotation. The specific energy in the vibrational 
mode for diatomic molecules then satisfies 

Ev(T) = R[&Tv + Tv/(eTv’T - l)] (26) 
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(see Landau & Lifshitz 1958, p. 136), where T ,  is called the characteristic tem- 
perature for vibration. For temperatures greatly in excess of Tv the vibrational 
mode is fully excited with E,(T) = RT. The total specific energy is given by 
E(T) = E,(T)+E,(T)+E,(T) if we neglect the energy in the other modes of 
molecular motion. 

For diatomic gases in equilibrium, the specific heat at constant volume, given 

varies because the vibrational energy does not depend linearly on the tempera- 
ture. I n  air a t  temperatures below about 500 O K ,  the variations are dominated 
by the contribution from the oxygen molecules, since for oxygen the character- 
istic temperature for vibration is about 2228 OK while for nitrogen it is about 
3336 OK (Herzfeld & Litovitz 1959, table 50). At higher temperatures, however, 
the contribution from the nitrogen molecules dominates. For temperatures much 
less than the characteristic temperature for vibration, variations in the specific 
heats are small, but nevertheless they can lead to a significant monopole source. 

To illustrate this source we consider adiabatic mixing at constant pressure of 
two equal masses of a perfect gas. The temperatures, volumes and densities of 
the two masses of gas before mixing are T,, V,, p1 and T,, V,, pz with pl V, = p, V, 
and Rp, Tl = Rp, T,. The fully mixed state is specified by T ,  V ,  p. The governing 
equations are 

Rp, T1 = Rp,T2 = RpT (constant pressure), 

p1 V, +pa V, = p V (conservation of mass) 
and 

plV,E(Tl)+p,V,E(T,) = pVE(T)+RpT(V-V,-V,) 

from which it follows that 

(conservation of energy), 

( V -  v, - V,m + V,) = P T -  (TI + T,)I/(T,+ %), 
where T satisfies 

2(RT +E(T))  RTI + E(T1) +RT2 +E(T,). 

In  general 2T =# Tl + T,, and there will be a change in the total volume as the gases 
mix. Acoustically, this is equivalent to a monopole. 

When a gas is not in equilibrium, the energy contained in any particular mode 
of molecular motion is not in general a function just of the temperature. The 
translational kinetic energy always defines the temperature, so that even in non- 
equilibrium situations the translational specific energy e ,  equals its equilibrium 
value E,( T )  : eT = Ep(T) = 4RT. 

But variations in the energy contained in other modes will tend to lag behind 
variations in temperature. The lag between the specific rotational energy eR and 
its equilibrium value ER(T) is small and can be modelled by introducing a bulk 
viscosity into the viscous stress tensor T~~ (see Lighthill 1956). Then 

(28) 

(27) 

e, = E,(T) = RT. 
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The time lag before the specific vibrational energy eV reaches its equilibrium 
value, however, is much greater, and must be modelled for small departures from 
equilibrium with the aid of a rate equation 

% J D t  = (Ev(T1- ev)l.v (29) 

(see Lighthill 1956), where 7 ,  is the relaxation time for the vibrational mode. 
For oxygen 7 ,  z 3 x s when T = 288 OK and rv z s when T = 900 OK; 

for nitrogen T,, is not significantly different (Hemfeld & Litovitz 1969, table 60). 
Introducing water vapour greatly reduces the relaxation time ; for example, fully 
saturated air at  293 OK has a relaxation time of about 0.5 x lo+ s (Lighthill 
1966). 

We find it convenient to u8e in our analysis the specific energy 

e = e,+e,+ev = &++ev. (30) 

Instead of the temperature equation (5) or the entropy equation (21) we have the 
energy equation 

(see Lighthill 1956). The energy flux vector q has a contribution from the diffusion 
of molecules with different vibrational energies, so that 

qk = - k a T p k  - n9,8ev/axk, 

where 9 is the coefficient of self-diffusion and n is the molecular number density 
(see Clarke & McChesney 1964, 56.9). 

The monopole source strength is therefore 

The only significant difference between this and our earlier result (22) is the 
additional term 

2 1 De, 
PoJv - - ? i j i p X d " .  

We may again neglect all the other terms on the right-hand side of (32);so that, 
correct to O(M2), 

poJsu.dS = p o I v  - ? L * d v .  7RT Dt (33) 

The vibrational mode effectively acts as a source and sink of heat, causing the 
fluid to expand and contract and generating a monopole sound field. The source 
term does not in general vanish since, when two masses of a non-monatomic gas 
mix, the vibrational energy lost by the hotter gas exceeds that gained by the 
colder. 

At high frequencies, when the time scale of the fluctuations is much smaller 
than the relaxation time, the vibrational mode is unable to respond to the rapid 
fluctuations in the temperature, and we have frozen flow with the rate equation 
(29) reducing to De,lDt = 0. Then the monopole source strength (33) vanishes. 

At low frequencies, the rate equation reduces to Ev(Z") - eV = 0; i.e. the energy 
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in the vibrational mode always equals its equilibrium value. I n  this case the 
monopole source strength (33) becomes 

pojsu.dS = po s -- 7RT -- DEvdV. Dt 

Since E ,  is a function of temperature alone, DE,/Dt = dE,/dT DT/Dt. From 
the energy equation ( 2 1 )  and equations ( 2 7 )  and ( 2 8 ) ,  therefore, 

At temperatures much less than the characteristic temperature for vibration, 
nearly all the molecular energy is contained in the translational and rotational 
modes, so we can neglect terms quadratic in the specific heat dE,/dT for the 
vibrational mode. Thus 

Further manipulation gives the low frequency monopole source strength as 

( (dEP)3 (34) 

u.dS =pas - - ( ~ ) 2 d V + O ( M s ) + 0  K d2E, 
,cpT dT2 axi R2 dT 

These high and low frequency results can be obtained directly from (23). If the 
temperature fluctuations are small and periodic in time with radian frequency o, 
then the effective specific heats are given by 

(Co)eii = +R+ ( d E v / W / ( 1  + i ~ ~ v ) ,  

( ~ ~ ) ~ f f  = gR + (dEv/dT)/( 1 + i07y) 

(see Herzfeld & Litovitz 1969; Lighthill 1956). At low frequencies, 07, =g 1, 

neglecting terms smaller by factors of R-ldE,/dT, and the monopole source 
strength is given by (34). At high frequencies, WT, 9 1, the vibrational energy 
cannot respond to the variations in temperature, so ay;./axi = 0 and the mono- 
pole source strength vanishes. 

Dimensional arguments like those in 3 6 suggest that the low frequency mono- 
pole source strength should scale as 

rPo (TJ - 3 1 2  U S ~ ~ E ,  ( T ~ ) P T ~ I / ( ~ ,  TO) 

for the problem of a hot two-dimensional stream with temperature Tj  and vel- 
ocity U mixing turbulently with a cold stream of temperature To, where S is the 
thickness of the turbulent shear layer, and that the corresponding expression for 
the equivalent axisymmetric problem is 

2 
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when the hot jet has diameter D. The radiated far-field pressures at a distance R 
scale respectivelv as 

and 

For the two-dimensional problem of $ 5 for laminar inviscid flow, we deduce in 
appendix E that at low frequencies the noise radiated from the nonlinear mono- 
poIe source associatedwith variations in the specific heats has fluctuating pressure 

* (37) 
OK ~(Tl-To)2U*Tod2Ev(To)exp{ - - iw(t-R/c)-$im} -- 

p=pca(3) c cp dT2 ( 16nwR/c)4 

We have neglected terms smaller by factors of M ,  the Mach number, of wc/U2, 
the reciprocal of the PBclet number, of R-l;dE,/dT, the relative specific heat for 
the vibrational mode, or of ( Tl - To)/To, the relative temperature difference. For 
the problem of turbulent flow, as in $5, we expect the pressure to be increased 
by an amount of the order of the normally large factor (WK/ U2)-*, and we recover 
the result (36) obtained by dimensional analysis. We have not examined the 
problem of laminar axisymmetric flow in this manner because the mathematics 
become very involved; presumably similar conclusions would hold. 

We conclude that variability of the specific heats admits a monopole source in 
hot turbulent jets that can generate a far field scaling as U4 in three dimensions. 
The strength of this monopole source has a distinct frequency dependence, van- 
ishing at high frequencies. It is much weaker, even at low frequencies, than the 
conclusions of Crighton would suggest. Obermeier's published estimat,e of the 
source strength is also in error; it should be smaller by the factor 

or 34 dB typically. But even so this monopole will normally dominate over 
the dipole mechanism of $ 6  [compare (35) fand (36) with (19) and (20) or (37) 
with (17)]? since typically ( w K / c ~ ) *  w 

(T/cp)d2Ev/dT2 w 2 x 

8. Conclusions 
We have determined the sound radiated from an unsteady heat source. A 

monopole contribution dominates provided that the source is compact, and the 
radiated sound may then be deduced from a knowledge of the heat input alone. 

Estimates of the sound radiated due to fluctuating heat input are compared 
with estimates of that due to fluctuating forces for certain aeroengine and under- 
water applications. Although the intensity of sound due to the viscous boundary- 
layer drag is smaller by the Mach number squared than that due to the heat input, 
the fluctuating lift or form drag is often large enough to produce the most noise. 
But when boundary layers are turbulent heat sources are probably significant. 

I n  the absence of heat transfer between the fluid and any foreign bodies i t  is 
shown that the diffusive noise source is of dipole type provided only that the 
specific heats remain constant. A more significant source is associated with var- 
iability of the specific heats; i.e. a monopole with far-field intensity scaling as 
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Mach number to the fourth power. The monopole source strength is independent 
of Reynolds number, but it is multiplied by another small parameter (the rate of 
change of the specific heats with temperature). The monopole is associated with 
the flow of heat into and out of the vibrational energy mode of molecular motion; 
relaxation effects restrict the response of the vibrational degree of freedom to 
rapid fluctuations in temperature, so we argue that any noise radiated from this 
source will be of low frequency. Model jet experiments do appear to show this 
kind of frequency dependence (see Hoch et al. 1973). 

Lush & Fisher have obtained a correlation of hot-jet noise data by assuming 
that the increase with temperature of the low frequency noise at low Mach 
numbers is due to an additional diffusive monopole source. If this assumption is 
correct there will be an unusual scale effect. The presence of a second time scale 
(the relaxation time for the vibrational energy mode) means that acoustic fre- 
quencies will not simply scale as U/D.  In  addition there will be a marked varia- 
bility in the spectral distribution when the air is humid. The relaxation time for 
the vibrational mode depends critically on the humidity (about s for dry 
air, but lo4 s or less for humid air), and consequently so does the relaxation 
frequency (about 150 Hz for dry air, but 160 kHz or greater for humid air). The 
monopole source is significant at frequencies much less than the relaxation fre- 
quency and so could be significant even a t  high frequencies if the jet were humid. 
Although these idiosyncrasies could be helpful in estimating the importance of 
heat diffusion as a noise source, they might present great difficulties in the 
application of results for model jets to full-scale engine configurations, and may 
in fact be the cause of some of the scatter in the available experimental data. 
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Appendix A 
The steady temperature is given by the solution of (12), 

uaTi/ax = KV~T',  

with T' = (Tl - To) {H(x)  - H(x - u)}  on y = 0. 

The substitution 4 = T'eikx, where k = i U / 2 ~ ,  gives 

a24lax2 + a24lag + k24 = 0, 

with #(x, 0) = (Tl-To)(H(x)-H(x-a))eiks .  

Taking Fourier transforms in x defined by 
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we have the solution 

where 
strip U/2k > Im (a) > - U/2k, and 

= (a2- k2)* is taken to have positive real part. @(a, y) is analytic in the 

$(x, y) = 11, @(a, y) e-iaxda. 

The unsteady temperature satisfies (13), 

aT*/at + uaT*lax - KV~T * = - u *e*t aT/ax, 

with T* = 0 on y = 0. The substitution $* = T*eikx+zot reduces this to 

with q5* = 0 on y = 0. Here la = ( ~ U / ~ K ) ~ + ~ O / K .  Again taking Fourier trans- 
forms, we have the solution 

where 

and 7 = (a2 - 12)8 is taken to have positive real part. 
We thus have 

u*(q - +/Im 2niw (1 - eida+k)) (e+ - e-qg) exp [ - i(a + k) x - iwt] da. (40) 

- c2p0 a,, U * ( Tl - To) ( 1 - eia(a+k)) 
exp [ -i(a + k )  x-iiwt] 27T TO( 1 4- M COS 8) 

since-hfr = - ( U / c  + U*e-iw/c) cos 8,  M = U/c, 6 = w / (  1 + M COB 8)  and 8 is the 
angle of observation. Substituting in the three-dimensional result (14) with the 
zero s a x  on x omitted, 

and integrating with respect to xo3 by the method of stationary phase, we have, 
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since ap/ay = 0 on y = 0, 

iOpo U*(T, - To) exp { - iQ(t - R/c) + aim}  
2nT0 (8nOR/c)* (1 + M cos B)2 

c2(p -Po) (" t ,  = 

Thus the far-field acoustic pressure is 

For small &/c, we obtain (G), 

while, for a+m, we obtain (16), 

Appendix B 
We now solve (38), 

a2#/ax2 + ay/aya + ~4 = 0, 

subjecttogl = (T, - To) eiksfor y = 0 , x  > 0, # continuous and a#/ay = 0 for y = 0, 
2 < 0, and subject to radiation and edge conditions. Taking Fourier transforms, 
as before, we have @(a, y) = A(a)  e-glgl (since 4 is continuous on y = 0). 

Using the notation of Noble (1958), i.e. denoting 

and 

we have @+(a, O+) = @+(a, 0-) = - (T, - T,)/(27Ti(a + k)),  

@-(a, O+) = @- (a, 0-) 

@L (a, O+) = @L (a, 0-) = 0. and 

Thus @:(a, O+)-<P;(a, 0-) = -2&4(a) = -2C{@-(a, 0)-(51'! l -To)/[2~i(~+k]} .  

Since @+(a, y) is regular for Im a > - U / ~ K ,  0- (a, y) is regular for Im a < U / ~ K ,  
and g is mgular and non-zero in the strip U / ~ K  > Im a > - U / ~ K ,  we may soIve 
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the equation by the Wiener-Hopf technique. We have 
1 (q - To) ( - 2k) i  (@$(a, O+) -@:(a, 0-)}-- 

(a + k)+ ni(a+ k) 

= -2(a-k)4@-(a, O ) + n i ( a + k )  (T1 - T,) ((a - k)+ - ( - 2k)+} = J(a) ,  

where J (a )  is a function regular in the whole complex plane. Close to the edge 
V2T z 0 and so we have the edge conditions q5 = O(1) and Vq5 = O(lxl*) with 
m c 1 (see Noble 1958, p. 74). Consequently 

so J (a )  -+ 0 as 1.1 --f 03 in both the upper and the lower half-plane; by Liouville’s 
theorem J (a )  = 0. It follows that 

@-(a, 0)  = O(a-l) and @$(a, 0+) -@:(a, 0-) = 0(am-l), 

A(a)  = - ( T I  - To) ( - 2k)J/{2ni(a + k) (a - k)+}, 
80 

with q5* zero on y = 0, x > 0, q5* continuous and aq5*/8y zero on y = 0, x c 0 and 
subject to radiation and edge conditions, may be solved by inspection: 

We verify only that this solution satisfies the boundary conditions. For y = 0, 
x > 0, wemay complete the contour in the lower half-plane to obtain $* = 0. For 
y = 0, x < 0, q5* is continuous, and we may complete the contour in the upper half- 
plane to obtain a$*/ay = 0 (as 1.1 -+a the integrand - a-4e-iax, so that the 
contribution from the semicircle at infinity vanishes by Jordan’s lemma). It is 
not difficult to verify that the governing equation is obeyed, and that the radia- 
tion and edge conditions are satisfied (see, for example, Noble 1958, pp. 72-73). 

Thus we have 

So as before 
i&po U*(Tl-T, ) ( -2k)+exp{- i&( t -R/c)+~in}  

c2 (P -Po)  (C, t )  = 2 n ~ ,  (snm/c)+ (1 + M COB e ) 2  

exp { - i(a + k) x - iiijx cos S/c} 

x (exp [ - i&y sin O/cJ + exp [i&y sin S/cJ} 

(a - k)+ (a - I)+ c(a 6 + cos k )  0 (a e-@ - k)) ) d x d y c - ~ a + ~ ( T ) ,  
e-& e-qtr + x --- 1 
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since ap/@ = 0 on y = 0 (by symmetry for x < 0). Thus we again obtain (16): 

Appendix C 
In  the frame of reference (2, y, z )  moving with the plate, the temperature on 

y = 0, x > 0 is +(T, + q) by symmetry, while on y = 0, x < 0 we have aT/ay = 0. 
It follows that (42) may be used to deduce the steady and fluctuating temperature : 

* (Tl - To) ( - 2k)*exp [ - C1yI -i(a+ k) x] 
4ni(a + k) (a - k)* da . 

* U * ( q  - T,) (- 2k)t 
4niw 

exp [ - i(a + k)x - iwt] 

)da. (43) ((a - k)* (a - I)* 
e-f;bl e-qlYl 

x --- 

To determine the sound radiated directly, we use (14) and integrate with res- 
pect to xo3 by the method of stationary phase. Thus 

exp { - i(a + k) x - iGx cos B/c - iGy sin e/c) sgn y I-** I-** I:* 
which gives ( 17) : 

(Tl - To) GK U* 
sin 0 PoC2 --- 

'= (1+Mcos8)z To c2 c 

+o($)+o(T). exp [ - iG(t  - R/c) - #in] 
X 

(SnGB/c)t 

Appendix D 
The steady temperature in the equivalent three-dimensional axisymmetric 

problem satisfies UaT'lax = KV~T' with aT'/ar = 0 on r = a, x < 0, with T 3 To 
as x+ -03, r > a and with T+Tl as x - f  - 03, r < a, and is subject to radiation 
and edge conditions. Setting 

q5'e--ikX+To for r > a, 
T = i #  e-ikx+Tl for r < a, 

the governing equation reduces to 

(44) 
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with a#/ar continuous on r = a, x > 0 and zero on r = a, x < 0, and with 

#(r=a+)-$(r =m-) = (Tl-To)e"x for x > 0. 

Taking Fourier transforms in x, defining 

@(a,r) = - s #(x, r )  eiuzdz, 
277 - m  

A(a)Ko(&) for r > a, 
B(a)lo(@) for r c a, 

we have 

where 6 = (a2 - k2)i  has positive real part. Using the notation of Noble, as before, 
we have 

@(a,r) = 

@+(a, a+) -@+(a, a-) = - (q - IT,)/[277i(a+ k)], 

&a) K&a) = m) 4x4 
@,;(a, a+) = @,;(a, a-), @,L(a, a+) = @L(a,a-) = 0. 

so 

KO(&) I (@;a) 1 - 2  

cw!w --o- 
Now 

C M a )  - aC2J;(5a> K;(Ya) = @"+(a) K(4' 
where K+(a) R ( a )  = - 2Ki(&) I;(@), and K*(a) are analytic and asymptote to 
Iccl-la in the upper and lower half-planes respectively (see Noble 1968, pp. 110- 
118). Thus 

- To) {(a - k) R ( a )  + 2kK.J - k)} 
27+ + k) {a- (a, a+) - 0- (a, a-)} (a - k) K-(a) - 

(5 - To) 2 k R (  - k) = J(a) ,  
- 2@; (a, a)  - - 

(a + k) aK+(a) - 277b(cc + k) 
where J (a )  is analytic in the entire complex plane. Edge conditions ensure that 
J(a)+ 0 as 1.1 +a, so J (a )  = 0 by Liouville's theorem. Thus 

A(a) = - (TI - To) U a K (  - k) K+(a)/{4m~cK;(@)} 

and B(a) = - (TI - To) UaKJ - k) K+(a)/{4nK51;(@4}. 

s o  

The solution of the unsteady temperature equation 

which satisfies the boundary conditions a#*/& continuous on r = a, x > 0 and 
zero on r = a, 2 c 0 and $* continuous on T = a, 2 > 0 and which also satisfies the 
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radiation and edge conditions may be found by inspection to be 

26 

where 7 = (a2-Z2)* is taken to have positive real part. 

L+(a) L ( a )  = - 2Ki(7a) I&a) 

with &(a) analytic and asymptoting to laI-8 in the upper and lower half-planes 
respectively. Again, as in appendix B, we verify onIy that the boundary conditions 
are satisfied. We have 

U(Tl - To) U*aK-( - k) #*(r = a+) - #*(r = a-) = 
471KO 

since 

For x > 0 the contour may be completed in the lower half-plane. The integral 
vanishes so q5* is continuous on r = a, ~tr > 0. a#*/ar is clearly continuous on r = a, 
and is given by 

U(Tl - To) U*a K- ( - k) * ( r  = a )  = 
ar 47TKW 

x 1;- {(a + k) K+(a) - (a + I) L+(a)} e-iuzda. 

As 1011 -fa, K+(a) - (-ia)-& for Im (a) > 0 (see Levine t Schwinger 1948), so 
the integrand - e-6axa-k By Jordan's lemma the contribution from t-he semi- 
circle at  infinity in the upper half-plane vanishes for x < 0 and so a#*/ar = 0 for 
T = a, x < 0. 

Thus we have 

K + ( a ) V ( ~ r ) - ~ ( a + k ) K + ( a ) V ( 6 r )  eiWt 
w 6 

)da. (46) 
U* (a -t I )  L+(a) V(7r) e-t 
0 7 

+- 
The sound radiated directly is given by 
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where M = U/c  and Gi = w/( 1 + M cos 8). Now 

s,"" cos ~ d $  = 0 
and also 

so at low enough frequencies we need consider only the third term when we 
expand the exponential exp ( - i 8 r  sin 6 cos $/c) as 

1 - i8r  sin 8 cos $/c - 021.2 sin2 8 cos2 $/2c2 + . . . . 

so 

2an(a + I )  L+(u) C2 sin2 8 d a  
x 2 r 4 a  + k + 8 cos 8 / c )  

7 s G ( w )  G ( 7 a )  7 2c2 - 
When a + k + (3 cos B/c = 0, q2 % - ~ S / K  and 

- K- ( - k) L+W - K - ( - k )  
21;(7a) Ki(ya) - L-( - k - 8 cos 8/c)' 

K- and L- are functions analytic in the lower half-plane that differ only in their 
wavenumbers k = 'L'U/~K and I = (k2 + iw//c)* x k( 1 - 2 i w ~ / U ~ )  respectively. 
Consequently at low enough frequencies K-( - k ) / L (  - k - 8 cos 8 / c )  x 1 and 

TI - To GK U* Oasin2 8 exp [ - i8(t - R/c)] 
c2(p-po)(%t)  -(1+Jfcos0)2 To c2 c 4R/a 9 

poc2 
---I__ 

which is (18). 

Appendix E 
The monopole source strength is given by (34) ,  

neglecting terms quadratic in the specific heat dE,/dT for the vibrational mode 
and terms of order M3.  We further neglect those terms higher than quadratic in 
the temperature variations. The source strength should be evaluated in the frame 
of reference 5 in which the fluid at infinity is at  rest, but for our purposes it is 
sufficient to work entirely in the frame of reference x in which the semi-infinite 
plate is stationary; the relative error will be O ( M ) .  Finally, in the two-dimen- 
sional problem, gradients in the y direction are much stronger than those 
in the x direction, so that ( a T l 8 ~ ) ~  < ( 8 T / a ~ ) ~  (the contribution to the source 
strength from (8T/ay)2 is larger by a factor of the Pdclet number U 2 / w ~  than the 
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(fl) 

FIGURE 3. Contours for (a) the a and (b) the /3 integration. 

contribution from (aT'/ax)z). Thus the dominant contribution to the monopole 
source strength is the fluctuating part of 

In  the earlier analysis we have treated all fluctuating variables as complex; 
the physical quantities involved correspond to the real part of these complex 
variables. In  the linear theory it is possible to work in terms of complex quantities 
throughout, but in the nonlinear theory it is important to take real parts. Thus in 
the expression (47) for the source strength we must substitute the real part of 
(43). 

The fluctuating part of (aTli3y)2 is given to first order in U* by 

47qp + k) (p - k)+ - i(F + k)x' dpl P1- T,) & - 2wexPC - f l Y l  
2%(J--m 

O0 U*(Tl - To) ( - 2k) t  exp [ - i(a + k) 2 - iwt] 
47liw 

or 

where 6 = (~1.2- k2)!i, q = (a2 - Z2)* and 6 = (p2 - k2) i  all have positive real parts. 
After the integrations with respect to x and y and some further manipulations 
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\ 
\ 
\ 
\ 
\ 

FIQWE 4. Contoura for the a integration. 

have been performed, the monopole source strength (47) becomes 

For the sake of definiteness, we assume that in the complex plane the contour 
C,  for the a integration lies above the contour C2 for the p integration (figure 3). 
We obtain the same final result if we assume that C,  lies below C2. 

To evaluate the contribution from the first part of (48), we deform the contour 
for the a integration from C,  to C,, so that it passes under a = - k. In so doing 
we pick up contributions from poles at a = p and at a = (p2+ i w / ~ ) J .  These give 
us a contribution to the monopole source strength of 
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With the contour for the a integration modified to C,, it is possible to perform the 
/3 integration directly. When a +fl+ 2k = 0, 

[2-[2 = -4k (a+k) ,  ~ 2 - [ 2  = - 4 k ( a + k + ~ / 2 U )  

and branch cuts from fl  = -k to /3 = -ice run from a = -k to a = +im. So 
there is a contribution to the source strength of 

po~d2E,(To)  U*(Tl-T )2 (a - k)S (a+I)(a-Z)4 
cpTo dT2 47rW Re (Scf-'lt[ ( -01-  k)A- (a + k + 4 2 U )  ( -a -  k)AIda]' 
- 

Branch cuts run from a = k,  a = - k  and a = Z to a = ioo, and the pole at 
a + k + 0 / 2 U  lies above the contour, so we can further deform the contour for the 
a integration to C, (see figure 4) ,  the semicircle at infinity in the lower half-plane, 
without crossing any poles. 

as Ia[-.oo (a + 1)  (a - Z)* 
[(~~~~t-(a+k+w/2U)(--a--k)A 

so the contribution to the source strength from this integral is 

PO Kd2EV(TO) U*(Tl- To)2 ~ U ~ K  - Re { - i e-ht}, cpTo dT2 4 r u  2u3a 

smaller than (49)  by O((WK/U~)* ) .  
The second part of (48)  is evaluated by first deforming the contour for the /3 

integration from C, to C,, since here branch cuts for the fl  integration are in the 
upper half-plane. This is achieved without crossing any poles. The a integration 
is then simply performed. We can further deform the contour for the B integration 
to C,, the semicircle at  infinity in the lower half-plane, and the contribution to the 
source strength is again smaller than (49) by O( ( OK/ U2)g).  

The expression for the monopole source strength is therefore given by (49) ,  

neglecting terms smaller by factors of M ,  the Mach number, of O K / U ~ ,  the recipro- 
cal of the P6clet number, of R-ldE,/dT, the relative specific heat for the vibra- 
tional mode, or of (Tl- To)/To, the relative temperature difference. The radiated 
far-field pressure is given by the real part of 

which is (37). 
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